A topological characterization of dual strict convexity in Asplund spaces

Richard Smith

University College Dublin, Ireland

17th December 2019

Э.

-∢ ⊒ ▶

-

< □ ▶

Definition 1.3

A topological space X has (*) if there is a sequence $(\mathscr{U}_j)_{j=1}^{\infty}$ of families of open subsets of X, such that given $x, y \in X$, there exists $j \in \mathbb{N}$ satisfying

э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

@ ▶ ◀ Ē ▶ ◀ Ē ▶

Definition 1.3

A topological space X has (*) if there is a sequence $(\mathscr{U}_j)_{j=1}^{\infty}$ of families of open subsets of X, such that given $x, y \in X$, there exists $j \in \mathbb{N}$ satisfying

● $\{x, y\} \cap \bigcup \mathscr{U}_j$ is non-empty, and

34

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < 三 > < 三 >

Definition 1.3

A topological space X has (*) if there is a sequence $(\mathscr{U}_j)_{j=1}^{\infty}$ of families of open subsets of X, such that given $x, y \in X$, there exists $j \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_j$ is non-empty, and
- 2 $\{x, y\} \cap U$ is at most a singleton for all $U \in \mathscr{U}_j$.

34

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < □ > < □ > < □ > < □ > < □ > <

Definition 1.3

A topological space X has (*) if there is a sequence $(\mathscr{U}_j)_{j=1}^{\infty}$ of families of open subsets of X, such that given $x, y \in X$, there exists $j \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_j$ is non-empty, and
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathscr{U}_j$.

Such a sequence (\mathcal{U}_j) is called a (*)-sequence.

34

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ -

Definition 1.3

A topological space X has (*) if there is a sequence $(\mathscr{U}_j)_{j=1}^{\infty}$ of families of open subsets of X, such that given $x, y \in X$, there exists $j \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_j$ is non-empty, and
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathscr{U}_j$.

Such a sequence (\mathcal{U}_j) is called a (*)-sequence.

Example 1.4

Any metric space X has (*): set
$$\mathscr{U}_j = \{U \subseteq X \text{ open } : \text{ diam}(U) < 2^{-j}\}$$

34

SQ (A

<ロ > < 同 > < 同 > < 三 > < 三 > 、

Definition 1.3

A topological space X has (*) if there is a sequence $(\mathscr{U}_j)_{j=1}^{\infty}$ of families of open subsets of X, such that given $x, y \in X$, there exists $j \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_j$ is non-empty, and
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathscr{U}_j$.

Such a sequence (\mathcal{U}_j) is called a (*)-sequence.

Example 1.4

- Any metric space X has (*): set $\mathscr{U}_j = \{U \subseteq X \text{ open } : \text{ diam}(U) < 2^{-j}\}.$
- 2 Any 1-point compactification $K = \Gamma \cup \{\infty\}$ has (*): set

$$\mathscr{U}_1 = \{\{\gamma\} : \gamma \in \Gamma\} \text{ and } \mathscr{U}_2 = \{K\}.$$

34

SQ (A

<ロ > < 同 > < 同 > < 三 > < 三 > 、

Definition 1.3

A topological space X has (*) if there is a sequence $(\mathscr{U}_j)_{j=1}^{\infty}$ of families of open subsets of X, such that given $x, y \in X$, there exists $j \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_j$ is non-empty, and
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathscr{U}_j$.

Such a sequence (\mathcal{U}_j) is called a (*)-sequence.

Example 1.4

- Any metric space X has (*): set $\mathscr{U}_j = \{U \subseteq X \text{ open } : \text{ diam}(U) < 2^{-j}\}.$
- 2 Any 1-point compactification $K = \Gamma \cup \{\infty\}$ has (*): set

$$\mathscr{U}_1 = \{\{\gamma\} : \gamma \in \Gamma\} \text{ and } \mathscr{U}_2 = \{K\}.$$

The (*) property generalises the property of having a G_{δ} -diagonal, that is, the diagonal $\{(x, x) : x \in X\} \subseteq X^2$ is a G_{δ} set.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(日)

Definition 1.5

Let $B \subseteq X$, where X is a Banach space. Any set of the form

$$\{x \in B : f(x) > \alpha\}, \qquad f \in S_{X^*}, \alpha \in \mathbb{R},$$

is a weakly open (*w*-open) **slice** of *B*.

34

<ロト < 団 > < 巨 > < 巨 >

Definition 1.5

Let $B \subseteq X$, where X is a Banach space. Any set of the form

$$\{x \in B : f(x) > \alpha\}, \qquad f \in S_{X^*}, \alpha \in \mathbb{R},$$

is a weakly open (*w*-open) **slice** of *B*. Likewise, if $B \subseteq X^*$ then

$$\{f \in B : f(x) > \alpha\}, \quad x \in S_X, \alpha \in \mathbb{R},$$

is a w^* -open slice.

34

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

Definition 1.5

Let $B \subseteq X$, where X is a Banach space. Any set of the form

$$\{\mathbf{x} \in \mathbf{B} : f(\mathbf{x}) > \alpha\}, \qquad f \in \mathbf{S}_{\mathbf{X}^*}, \ \alpha \in \mathbb{R},$$

is a weakly open (*w*-open) **slice** of *B*. Likewise, if $B \subseteq X^*$ then

$$\{f \in B : f(x) > \alpha\}, \quad x \in S_X, \alpha \in \mathbb{R},$$

is a w^* -open slice.

Definition 1.6

The subspace (B, w) of X has (*) with slices if we can find a (*)-sequence $(\mathscr{U}_j)_{j=1}^{\infty}$, such that every element $U \in \bigcup_{j=1}^{\infty} \mathscr{U}_j$ is a w-open slice of B.

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 国 > < 国 > < 国 > < 国 > <

Definition 1.5

Let $B \subseteq X$, where X is a Banach space. Any set of the form

$$\{\mathbf{x} \in \mathbf{B} : f(\mathbf{x}) > \alpha\}, \qquad \mathbf{f} \in \mathbf{S}_{\mathbf{X}^*}, \ \alpha \in \mathbb{R},$$

is a weakly open (*w*-open) **slice** of *B*. Likewise, if $B \subseteq X^*$ then

$$\{f \in B : f(x) > \alpha\}, \quad x \in S_X, \alpha \in \mathbb{R},$$

is a w^* -open slice.

Definition 1.6

The subspace (B, w) of X has (*) with slices if we can find a (*)-sequence $(\mathscr{U}_j)_{j=1}^{\infty}$, such that every element $U \in \bigcup_{j=1}^{\infty} \mathscr{U}_j$ is a w-open slice of B.

Likewise for subspaces (B, w^*) of X^* .

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

In 1976, Lindenstrauss asked whether it is possible to characterize Banach spaces that admit a strictly convex norm.

Э.

∃ ▶ ∢ ∃ ▶

In 1976, Lindenstrauss asked whether it is possible to characterize Banach spaces that admit a strictly convex norm.

Theorem 1.6 (Orihuela, S and Troyanski 2012)

Let *X* be a Banach space. The following are equivalent.

• $X(X^*)$ admits a strictly convex (dual) norm;

 $\mathcal{A} \cap \mathcal{A}$

- E - D

In 1976, Lindenstrauss asked whether it is possible to characterize Banach spaces that admit a strictly convex norm.

Theorem 1.6 (Orihuela, S and Troyanski 2012)

Let *X* be a Banach space. The following are equivalent.

- $X(X^*)$ admits a strictly convex (dual) norm;
- 2 (X, w) $((X^*, w^*))$ has (*) with slices;

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ∃ ▶ < ∃ ▶

In 1976, Lindenstrauss asked whether it is possible to characterize Banach spaces that admit a strictly convex norm.

Theorem 1.6 (Orihuela, S and Troyanski 2012)

Let X be a Banach space. The following are equivalent.

- $X(X^*)$ admits a strictly convex (dual) norm;
- 2 (X, w) $((X^*, w^*))$ has (*) with slices;
- (S_X, w) ((S_{X^*}, w^*)) has (*) with slices.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

I = ► I = ►

In 1976, Lindenstrauss asked whether it is possible to characterize Banach spaces that admit a strictly convex norm.

Theorem 1.6 (Orihuela, S and Troyanski 2012)

Let X be a Banach space. The following are equivalent.

- $X(X^*)$ admits a strictly convex (dual) norm;
- 2 (X, w) $((X^*, w^*))$ has (*) with slices;
- 3 (S_X, w) $((S_{X^*}, w^*))$ has (*) with slices.

(1) \Rightarrow (2): assume $\|\cdot\|$ is strictly convex on *X*. Given $q \in (0, \infty) \cap \mathbb{Q}$, set

$$\mathscr{U}_q = \{ \{ x \in X : f(x) > q \} : f \in S_{(X, \|\cdot\|)^*} \}.$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- 4 回 🕨 🖌 🖉 🕨 🖌

In 1976, Lindenstrauss asked whether it is possible to characterize Banach spaces that admit a strictly convex norm.

Theorem 1.6 (Orihuela, S and Troyanski 2012)

Let X be a Banach space. The following are equivalent.

- $X(X^*)$ admits a strictly convex (dual) norm;
- 2 (X, w) $((X^*, w^*))$ has (*) with slices;
- (S_X, w) ((S_{X^*}, w^*)) has (*) with slices.

(1) \Rightarrow (2): assume $\|\cdot\|$ is strictly convex on *X*. Given $q \in (0, \infty) \cap \mathbb{Q}$, set

$$\mathscr{U}_q = \{ \{ x \in X : f(x) > q \} : f \in S_{(X, \|\cdot\|)^*} \}.$$

Let $x \neq y \in X$. Then $\frac{1}{2} ||x + y|| < \max\{||x||, ||y||\}$. Take $q \in \mathbb{Q}$ in the gap.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 国 > < 国 > < 国 > 、 国 > 、

In 1976, Lindenstrauss asked whether it is possible to characterize Banach spaces that admit a strictly convex norm.

Theorem 1.6 (Orihuela, S and Troyanski 2012)

Let X be a Banach space. The following are equivalent.

- $X(X^*)$ admits a strictly convex (dual) norm;
- 2 (X, w) $((X^*, w^*))$ has (*) with slices;
- (S_X, w) ((S_{X^*}, w^*)) has (*) with slices.

(1) \Rightarrow (2): assume $\|\cdot\|$ is strictly convex on *X*. Given $q \in (0, \infty) \cap \mathbb{Q}$, set

$$\mathscr{U}_q = \{ \{ x \in X : f(x) > q \} : f \in S_{(X, \|\cdot\|)^*} \}.$$

Let $x \neq y \in X$. Then $\frac{1}{2} ||x + y|| < \max\{||x||, ||y||\}$. Take $q \in \mathbb{Q}$ in the gap. As $q < \max\{||x||, ||y||\}$, there exists $f \in S_{(X, ||\cdot||)^*}$ such that f(x) > q or f(y) > q, so $\{x, y\} \cap \bigcup \mathscr{U}_q \neq \varnothing$.

Э.

<ロ > < 回 > < 回 > < 回 > < 回 > 、

In 1976, Lindenstrauss asked whether it is possible to characterize Banach spaces that admit a strictly convex norm.

Theorem 1.6 (Orihuela, S and Troyanski 2012)

Let X be a Banach space. The following are equivalent.

- $X(X^*)$ admits a strictly convex (dual) norm;
- 2 (X, w) $((X^*, w^*))$ has (*) with slices;
- 3 (S_X, w) $((S_{X^*}, w^*))$ has (*) with slices.

(1) \Rightarrow (2): assume $\|\cdot\|$ is strictly convex on *X*. Given $q \in (0, \infty) \cap \mathbb{Q}$, set

$$\mathscr{U}_q = \{ \{ x \in X : f(x) > q \} : f \in S_{(X, \|\cdot\|)^*} \}.$$

Let $x \neq y \in X$. Then $\frac{1}{2} ||x + y|| < \max\{||x||, ||y||\}$. Take $q \in \mathbb{Q}$ in the gap.

As $q < \max\{\|x\|, \|y\|\}$, there exists $f \in S_{(X, \|\cdot\|)^*}$ such that f(x) > q or f(y) > q, so $\{x, y\} \cap \bigcup \mathscr{U}_q \neq \varnothing$. As $\frac{1}{2} \|x + y\| < q$, we cannot have **both** g(x) > q and g(y) > q for some $g \in S_{(X, \|\cdot\|)^*}$.

In general, the slice condition in Theorem 1.6 (2) and (3) is necessary: there is X such that (X, w) has (*), yet X admits no strictly convex norm (OST 2012).

Э.

·< 토 ▶ < 토 ▶

In general, the slice condition in Theorem 1.6 (2) and (3) is necessary: there is X such that (X, w) has (*), yet X admits no strictly convex norm (OST 2012).

By Krein-Milman, $B_{X^*} = \overline{\operatorname{conv}}^{w^*}(\operatorname{ext}(B_{X^*}))$, and by Choquet, all extreme points have a local base of slices.

Э.

 $\checkmark Q \land$

< ロ > < 団 > < 豆 > < 豆 > 、

In general, the slice condition in Theorem 1.6 (2) and (3) is necessary: there is X such that (X, w) has (*), yet X admits no strictly convex norm (OST 2012). By Kroin Milmon, $R = \frac{1}{2000} \frac{W^*}{W^*} (avt(R - x))$, and by Chequet, all extreme

By Krein-Milman, $B_{X^*} = \overline{\operatorname{conv}}^{w^*}(\operatorname{ext}(B_{X^*}))$, and by Choquet, all extreme points have a local base of slices.

Theorem 1.7 (OST 2012)

Let *K* be a scattered compact space. The following are equivalent.

• $C(K)^*$ admits a strictly convex dual norm;

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

In general, the slice condition in Theorem 1.6 (2) and (3) is necessary: there is X such that (X, w) has (*), yet X admits no strictly convex norm (OST 2012). By Krein-Milman, $B_{X^*} = \overline{\text{conv}}^{w^*}(\text{ext}(B_{X^*}))$, and by Choquet, all extreme

points have a local base of slices.

Theorem 1.7 (OST 2012)

Let *K* be a scattered compact space. The following are equivalent.

- $C(K)^*$ admits a strictly convex dual norm;
- 2 $(C(K)^*, w^*)$ has (*) with slices;

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ロ > < 同 > < 三 > < 三 > 、

In general, the slice condition in Theorem 1.6 (2) and (3) is necessary: there is X such that (X, w) has (*), yet X admits no strictly convex norm (OST 2012). By Krein-Milman, $B_{X^*} = \overline{\text{conv}}^{w^*}(\text{ext}(B_{X^*}))$, and by Choquet, all extreme

points have a local base of slices.

Theorem 1.7 (OST 2012)

Let *K* be a scattered compact space. The following are equivalent.

- $C(K)^*$ admits a strictly convex dual norm;
- 2 $(C(K)^*, w^*)$ has (*) with slices;
- **3** $(C(K)^*, w^*)$ has (*);

31

 $\mathcal{A} \mathcal{A} \mathcal{A}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ -

In general, the slice condition in Theorem 1.6 (2) and (3) is necessary: there is X such that (X, w) has (*), yet X admits no strictly convex norm (OST 2012). By Krein-Milman, $B_{X^*} = \overline{\text{conv}}^{w^*}(\text{ext}(B_{X^*}))$, and by Choquet, all extreme

points have a local base of slices.

Theorem 1.7 (OST 2012)

Let *K* be a scattered compact space. The following are equivalent.

- $C(K)^*$ admits a strictly convex dual norm;
- 2 $(C(K)^*, w^*)$ has (*) with slices;

3
$$(C(K)^*, w^*)$$
 has $(*);$

31

 $\mathcal{A} \mathcal{A} \mathcal{A}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ -

In general, the slice condition in Theorem 1.6 (2) and (3) is necessary: there is X such that (X, w) has (*), yet X admits no strictly convex norm (OST 2012). By Krein-Milman, $B_{X^*} = \overline{\operatorname{conv}}^{w^*}(\operatorname{ext}(B_{X^*}))$, and by Choquet, all extreme

points have a local base of slices.

Theorem 1.7 (OST 2012)

Let *K* be a scattered compact space. The following are equivalent.

• $C(K)^*$ admits a strictly convex dual norm;

2
$$(C(K)^*, w^*)$$
 has $(*)$ with slices;

3
$$(C(K)^*, w^*)$$
 has $(*);$

K has (*).

The implication (4) \Rightarrow (1) requires the work.

31

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 同 > < 同 > < 三 > < 三 > 、

The main result

Fact 1.9

Recall that a Banach space X is **Asplund** if and only if X^* has the **Krein**-**Milman property**: if $B \subseteq X^*$ is norm-closed, convex and bounded, then

 $B = \overline{\operatorname{conv}}^{\|\cdot\|}(\operatorname{ext}(B)).$

34

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 国 > < 国 > < 国 > < 国 > <

The main result

Fact 1.9

Recall that a Banach space X is **Asplund** if and only if X^* has the **Krein**-**Milman property**: if $B \subseteq X^*$ is norm-closed, convex and bounded, then

 $B = \overline{\operatorname{conv}}^{\|\cdot\|}(\operatorname{ext}(B)).$

Fact 1.10

A C(K) space is Asplund if and only if K is scattered.

34

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 国 > < 国 > < 国 > < 国 > <

For Asplund spaces we have a **purely topological** characterisation.

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

∢ ≣ ▶ ∢ ≣ ▶

For Asplund spaces we have a **purely topological** characterisation.

Theorem 1.11

Let X be an Asplund space. The following are equivalent.

• X^* admits a strictly convex dual norm;

< □ ▶

< ∃ →

-

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

For Asplund spaces we have a **purely topological** characterisation.

Theorem 1.11

Let X be an Asplund space. The following are equivalent.

- X^* admits a strictly convex dual norm;
- 2 (X^*, w^*) has (*) with slices;

< □ ▶

 $\Xi \rightarrow$

- ₹ ▶

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

For Asplund spaces we have a **purely topological** characterisation.

Theorem 1.11

Let X be an Asplund space. The following are equivalent.

- X^* admits a strictly convex dual norm;
- 2 (X^*, w^*) has (*) with slices;
- (X*, w*) has (*);

31

 $\mathcal{A} \mathcal{A} \mathcal{A}$

I = ► < = ►</p>

For Asplund spaces we have a **purely topological** characterisation.

Theorem 1.11

Let X be an Asplund space. The following are equivalent.

- X^* admits a strictly convex dual norm;
- 2 (X^*, w^*) has (*) with slices;

• (S_{X^*}, w^*) has (*).

31

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▶ ◀ ☱ ▶ ◀ ☱ ▶

For Asplund spaces we have a **purely topological** characterisation.

Theorem 1.11

Let X be an Asplund space. The following are equivalent.

- X^* admits a strictly convex dual norm;
- 2 (X^*, w^*) has (*) with slices;

• (S_{X^*}, w^*) has (*).

The implication (4) \Rightarrow (1) requires the work.

31

 $\mathcal{A} \mathcal{A} \mathcal{A}$

For Asplund spaces we have a **purely topological** characterisation.

Theorem 1.11

Let X be an Asplund space. The following are equivalent.

- X^* admits a strictly convex dual norm;
- 2 (X^*, w^*) has (*) with slices;

• (S_{X^*}, w^*) has (*).

The implication (4) \Rightarrow (1) requires the work.

The proof involves a set-theoretic derivation process indexed by a tree of finite sequences of ordered pairs of natural numbers and rational numbers.

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$